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1. Introduction

Suppose that X, Y are non-empty sets and that P ⊆ X×Y satisfies the property
that for all x ∈ X there is some y ∈ Y such that (x, y) ∈ P . From the Axiom of
Choice one can obtain a choice-function u : X → Y such that for all x ∈ X we
have (x, u(x)) ∈ P . We are concerned with the question of finding a “definable”
choice-function. Here our underlying spaces are Polish, i.e., the topological spaces
that arise from complete separable metric spaces. We give two examples of choice-
functions, in the first the choice-function is Borel-measurable, and in the second
it is continuous. Both these examples have important consequences in seemingly
unrelated topics. The former is joint work with Takayuki Kihara and Keng Meng
Ng.

We begin with some comments on notation. Given a set P we write P (x) instead
of x ∈ P . If P ⊆ X×Y and x ∈ X we denote by Px the x-section {y ∈ Y | P (x, y)}
of P . We identify the natural numbers with the first infinite ordinal ω. The family
of the Borel subsets of X is the least family that contains all open subsets of X
and is closed under the operations of the countable union and the complement. We
recall the finite levels of the usual hierarchy of the Borel sets in Polish spaces,

Σ˜ 0
1 = all open sets,

Σ˜ 0
n+1 = {∪i∈ωAi | all Ai are subsets of some Polish space X and X \Ai ∈ Σ˜ 0

n},
Π˜ 0
n ={B ⊆ X | X \B ∈ Σ˜ 0

n},

where n ≥ 1. For example Π˜ 0
1 is the class of all open sets, Σ˜ 0

2 the class of all Fσ
sets and so on. Given a class Γ and a Polish space X we denote by Γ � X the family
of all subsets of X that belongs to Γ.

We also recall the Baire space N = ωω, i.e., the Polish space of all sequences of
natural numbers with the product topology. The members of the Baire space are
denoted by lowercase Greek letters, α, β, γ, . . . . A subset A of a Polish space X is
analytic if it is the projection along the Baire space of a closed set F ⊆ X ×N .

A set G ⊆ N × X parametrizes Γ � X , where Γ is a class of sets, if for all
P ⊆ X we have that P ∈ Γ exactly when P = Gα = the α-th section of G for some
α ∈ N . We call the preceding α a code for P . If G parametrizes Γ � X and G is
also a member of Γ, we say that G is universal for Γ � X . We say that a class Γ is
parametrized if for every Polish space X the family Γ � X is parametrized.

The preceding classes Σ˜ 0
n are all parametrized by universal sets (GXn ){X : Polish} in

a natural way, for example GX1 consists of all pairs (α, x) such that x ∈ ∪i∈ωV (X , α(i)),
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where (V (X , s))s∈ω is a fixed enumeration of the basis of X . Also the class of ana-
lytic sets is parametrized by universal sets. The class of Borel sets is parametrized
as well, although the parametrizing sets cannot be universal. Thus we can talk
about Borel codes, analytic codes and Σ˜ 0

n codes. In fact in the latter two cases
every α ∈ N is an analytic (respectively Σ˜ 0

n) code for some possibly empty subset
of the given Polish space X .

2. The example of a Borel-measurable choice-function

In many naturally occurring cases of Borel sets P ⊆ X ×Y it is possible to find
Borel-measurable choice-functions. These include the cases where for all x ∈ X we
have that: Px is (a) compact, or (b) countable, or (c) non-meager, or (d) of positive
measure (for some fixed σ-finite Borel-measure). The area of effective descriptive
set theory explains the underlying cause for the validity of these results. This boils
down to the fact that we can find points in the sections Px, which are “definable
from x”. More specifically there is a canonical assignment d̃ : X → Xω such that
for each x, d̃(x) is a sequence that enumerates all points that are “definable from
x” (the ∆1

1(x)-points). Moreover this assignment is done in a Borel-way, so that

if P is Borel and for all x ∈ X , Px ∩ d̃(x) 6= ∅ then there is a Borel-measurable

choice-function for P , namely u(x) = d̃(x)(nx), where nx is the least index of a

term in d̃(x) that belongs to Px. This is the Strong ∆-Selection Principle, see [10,

4D.6]. If Px satisfies one of the preceding (a) − (d) then Px ∩ d̃(x) 6= ∅. (This is
a consequence of well-known theorems in effective descriptive set theory.) So from
the preceding P admits a Borel-measurable choice-function.

This method has recently found an application in the theory of functions in
Polish spaces [2]. To be more specific, suppose that f : X → Y is Σ˜ 0

n-measurable;
the latter means that f−1[U ] ∈ Σ˜ 0

n � X for all open U ⊆ X . For the natural choice
of universal sets GZm there is a continuous function u such that u(α) is a Σ˜ 0

n-code
for the open set that is encoded by α, i.e., GY1 (α, f(x)) ⇐⇒ GXn (u(α), x) for all
x ∈ X ; in this case we say that f−1Σ˜ 0

1 ⊆ Σ˜ 0
n is satisfied with a continuous function

in the codes.
Now let us consider the case where f : X → Y is Π˜ 0

n-measurable for some
n ≥ 2. The latter means that f−1[U ] ∈ Π˜ 0

n for all open U ⊆ Y. We denote this by
f−1Σ˜ 0

1 ⊆ Π˜ 0
n. This is a somewhat unusual property, and the only examples of such

functions that we are aware of are the functions for which there is a sequence (Xi)i∈ω
of Π˜ 0

n−1 sets such that X = ∪iXi and each restriction f � Xi is a Σ˜ 0
n−1-measurable

function. Whether these are the only functions that are Π˜ 0
n-measurable is an

important open question that remains open for n ≥ 3. The answer is affirmative
for n = 2 (Jayne-Rogers Theorem [3]) and it is conjectured that it is also affirmative
for all n ≥ 2. In fact there is an even stronger conjecture:

Conjecture 2.1. Suppose that X , Y are Polish spaces and that f : X → Y is a
function with the property that f−1Σ˜ 0

m ⊆ Σ˜ 0
n, where n,m are fixed naturals with

2 ≤ m ≤ n. Then there is a sequence (Xi)i∈ω of Π˜ 0
n−1 sets such that X = ∪iXi

and each restriction f � Xi is a Σ˜ 0
n−m+1-measurable function.

Kihara [5] showed that for all (n,m) with 2 ≤ n < 2m − 1 the functions that
satisfy the preceding conjecture at (n,m) are exactly the ones that satisfy the
condition f−1Σ˜ 0

m ⊆ Σ˜ 0
n with a continuous function in the codes. Unlike the case

of Σ˜ 0
n-measurability we do not know if the latter is always true, i.e., if the condition
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f−1Σ˜ 0
m ⊆ Σ˜ 0

n is always satisfied with a continuous function in the codes. However,
a major tool from effective descriptive set theory, namely the Louveau Separation
[9] establishes the existence of α-definabe points in the pre-image of (GYm)α under

f . In other words we have f−1[(GYm)α]∩ d̃(α) 6= ∅. So from the preceding we obtain

Theorem 2.2 (G.-Kihara-Ng, see [2]). Suppose that X , Y are Polish spaces and
that f : X → Y satisfies f−1Σ˜ 0

m ⊆ Σ˜ 0
n for some m,n ≥ 1. Then the condition

f−1Σ˜ 0
m ⊆ Σ˜ 0

n is satisfied with a Borel-measurable function in the codes.

Using the preceding result together with some deep results from recursion theory
we make progress on the conjecture above. More specifically it is proved in [2] that
Conjecture 2.1 is reduced to the instances (2, n), i.e., if the conjecture is true for
all n ≥ 2 = m then it is also true for all n ≥ m ≥ 2.

3. The example of a continuous choice-function

Unlike the preceding method, where the choice-functions are established by the
existence of definable points, continuous choice-functions are usually obtained by
a direct construction. Here we offer the example of one such choice-function that
is related to the notion of convexity. A subset A of RN , where N ≥ 1, is convexly
generated if it belongs to the least family, which contains all compact convex sets
(equivalently all open convex sets) and is closed under countable increasing unions
as well as countable intersections. The family of convexly generated subsets of RN
is parametrized and therefore we can talk about convexly generated codes.

It is evident that all convexly generated subsets of RN are Borel. Klee [6] asked
whether the converse is correct, and has answered this affirmatively in the case
N = 2, see [7]. Larman [8] proved the analogous result in the case N = 3, and
finally Preiss showed that the answer is affirmative for all N ≥ 1. In fact Preiss
showed the following stronger assertion that is known as Preiss Separation see [11]
and also [4, 28.15]: Suppose that A,B are disjoint analytic subsets of RN ; if A
is convex then there is a Borel set C that separates A from B, i.e., A ⊆ C and
C ∩ B = ∅. The proof of the latter result is by contradiction. We are able to give
a constructive proof, and as a consequence we obtain a continuous choice-function
in the codes.

Theorem 3.1 (G. see [1]). Suppose that N ≥ 1. Then there is a continuous (in fact
recursive) function u : N ×N → N such that for all α, β ∈ N , if α is an analytic
code for a convex set A and β is an analytic code for a set B that is disjoint from
A, then u(α, β) is a convexly generated code for a Borel separating set C.

A notable consequence to the preceding result is

Corollary 3.2. For all A ⊆ RN , N ≥ 1, the following are equivalent:

(i) A is convex and has a recursive Borel code;
(ii) A admits a recursive convexly generated code.
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