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Abstract. The various large cardinal axioms have been intensively studied
during the last decades and have proven to be a very important and fruitful

set-theoretic theme, with several mathematical applications. In this survey

talk, our aim is to give a brief overview of the large cardinal hierarchy, while
pointing at some indicative examples of notions whose reflective nature has

turned out to be useful in other mathematical contexts.

1. Extended abstract

The first-order axiomatic system of ZFC, that is, of Zermelo-Fraenkel set theory
with the Axiom of Choice, is an axiomatic framework that can encompass the vast
majority of the entire mathematical edifice, thus serving as the (widely accepted)
current foundation of mathematics.

However, and as a consequence of some groundbreaking mathematical advances
of the previous century (with central examples being Gödel’s results and Cohen’s
introduction of the method of forcing), there exists an extensive and ever-expanding
list of mathematical statements, from diverse areas of mathematics, which are prov-
ably independent ; that is, statements that can be neither proved nor disproved from
the ZFC axioms. In other words, by now, it is common knowledge that ZFC set the-
ory is unable to settle many important mathematical problems, among which there
are prominent examples such as Cantor’s Continuum Hypothesis. Consequently, it
is natural to wonder whether there are additional axioms that, when added to ZFC,
would result in a stronger theory that is able to resolve (at least some of) these
independent problems.

1.1. Large cardinals. One important family of candidates for new axioms consists
of the so-called large cardinal axioms. Roughly, such postulates, which were first
considered in the early 20th century, assert the existence of certain strong forms
of infinity (that is, of infinite sets satisfying certain strong properties), ones that
are not deducible from ZFC alone. To give an example, an uncountable cardinal
κ is called weakly inaccessible if it is both regular and a limit cardinal.1 We note
that the definition of weak inaccessibility generalizes, in the realm of uncountable
cardinals, properties that are already satisfied by ω = ℵ0. The existence of a weakly
inaccessible cardinal implies the existence of a set model for ZFC and, hence, it
cannot be proved in ZFC, unless ZFC is inconsistent.

The notion of weak inaccessibility is actually one of the “weakest” large cardinal
notions that have been considered; indeed, there are many “stronger” notions,
among which we find weakly compact, Ramsey, measurable, strong, Woodin, strongly

1Recall that an infinite cardinal κ is called regular if it cannot be written as the union of
less than κ many sets, each of size less than κ. Under the Axiom of Choice, every successor

cardinal, such as ℵ1, ℵ59 and ℵω1+31, is regular. An infinite cardinal is called singular if it is not
regular; it follows that every singular cardinal is necessarily a limit cardinal. The first example
of a singular cardinal is that of ℵω , which can be written as a countable union of smaller sets,

namely: ℵω =
⋃
n∈ω

ℵn.

1



2 KONSTANTINOS TSAPROUNIS

compact, supercompact, extendible cardinals, and others. In fact, the list of large
cardinals has grown considerably over the years, having been enriched with notions
coming from a wide spectrum of mathematical interests. Yet, it is an impressive
fact that these postulates are found to be linearly ordered in consistency strength,
forming an increasing hierarchy of stronger and stronger axioms of infinity (where
“stronger” — and, respectively, “weaker” — refers to consistency strength). Using
this hierarchy, we are then able to “measure”, via comparison, the consistency
strength of any independent set-theoretic (and, thus, mathematical) statement.

1.2. Reflection, compactness, and applications. An essential characteristic
of many large cardinal notions is their inherently reflective nature. This is an im-
portant and general feature that makes these notions both amenable to various
techniques and, also, widely applicable to several families of mathematical prob-
lems. Intuitively, and in broad terms, reflection can be described by saying that, if
a given structure satisfies some particular property, then there must already exist
some “small substructure” of it that satisfies the same property. In other words,
the property at hand must already “reflect” to something “smaller” where, typi-
cally, “smaller” means smaller in size. Dually, the concept of compactness can be
described by saying that, if some property holds for every small substructure of a
given structure, then the same property holds for the structure itself. Note that
these concepts provide us with a very general framework, able to capture structures
and properties from practically any mathematical area. Indeed, many problems in
mathematics can ultimately be rephrased as questions about reflection or, dually,
about compactness.

It is exactly in this respect that various large cardinals unfold their strength
and, thus, have significant import and influence on such issues. In fact, several
well-known large cardinal notions have traditional characterizations that are of
such flavor. For example, an uncountable cardinal κ is weakly compact if and only
if whenever a complete graph of size κ is edge-colored, using two colors, there is a
complete subgraph of size κ that is monochromatic, i.e., whose edges take all the
same color.2 Moving to even stronger notions, such as ω1-strongly compact and
strongly compact cardinals, and as an indication, let us give some specific results
that highlight the aforementioned influence, providing concrete applications in other
mathematical fields.

Theorem 1 (Bagaria & Magidor [4]). If κ is ω1-strongly compact, then:

(1) Every first-countable non-metrizable topological space X has a non-metrizable
subspace Y ⊆ X such that |Y | < κ.

(2) Every graph G with chromatic number χ(G) > ℵ0 has a subgraph H ⊆ G
with |H| < κ and χ(H) > ℵ0.

Theorem 2 (Bagaria & Magidor [4]). The cardinal κ is ω1-strongly compact if and
only if every product of Lindelöf spaces is κ-Lindelöf.

Theorem 3 (Magidor [6]). Suppose that κ is a strongly compact cardinal and that
X is a first-countable topological space. If every subspace of X of cardinality less
than κ is metric, then X itself is also metric.

Results involving ω1-strongly compact cardinals have also emerged in the field
of Algebra and, specifically, in Group Theory; see [3]. For even further applications
of (other) large cardinals in Category and Homotopy Theory see [2] and [5].

Towards a general framework, let ϕ be any property of some relevant family
of mathematical structures (e.g., topological spaces, metric spaces, groups, etc.),

2Note that this, in effect, is an uncountable generalization of Ramsey’s theorem. Weakly
compact cardinals have many other (equivalent) reformulations, of similar flavor.
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expressible over any logic (e.g., first-order, second-order, etc.). We assume that ϕ is
a property that is preserved under isomorphisms of the relevant structures, which
is a very natural assumption. It should be noted that this is already an extremely
general setting, where the vast majority of mathematical properties can be defined
and studied. Then, we make the following central definition:

Definition 4 (Magidor [6]). A cardinal κ is called a reflection cardinal for ϕ if,
given any relevant structure A such that ϕ(A) holds, there is a substructure B ⊆ A
with |B| < κ such that ϕ(B) holds.

Depending on the particular complexity of the (expressible) property ϕ, we are
able to gauge the strength of the large cardinal κ that serves as a reflection cardinal
for this property. In other words, given a mathematical property ϕ of some family
of structures of interest, we can effectively find the large cardinal assumption that
reflects the property. Some basic examples of this correlation are:

Theorem 5 (Magidor [6]). If κ is supercompact, then κ is a reflection cardinal for
every property of structures that is Σ2-expressible (in the language of set theory).

Theorem 6 (Magidor [6]). If κ is extendible, then κ is a reflection cardinal for
every property of structures that is Σ3-expressible (in the language of set theory).

As the complexity of (the defining formula of) the property of interest grows, we
need the assumption of even stronger principles. In fact, by work of Bagaria, we
have an exact level-by-level correspondence between the complexity of properties
and the relevant large cardinals notions; these are the so-called C(n)-extendible
cardinals — see [1].

1.3. This talk. In this survey talk, we will start by giving a brief overview of
the hierarchy of large cardinal axioms. Subsequently, we will concentrate on some
specific notions and their properties, presenting in some more detail how their
reflective nature has turned out to be useful in other mathematical contexts, such
as the ones mentioned above.
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