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Game semantics has been developed since the 1990s as a denotational paradigm captur-
ing observational equivalence in functional languages with imperative features. While
initially introduced for PCF variants, the theory can nowadays express effectful lan-
guages ranging from ML fragments and Java programs to C-like code. In this talk we
present recent advances in devising game models for effectful computation. Central in
this approach is the use of names for representing in an abstract fashion different forms
of notions and effects, such as references, higher-order values and polymorphism. We
moreover look at automata models relevant to nominal games and how can they be used
for model checking program equivalence. The material of this talk is presented in more
detail in the joint tutorial [26].

1 Games for programming languages

Game semantics is a branch of denotational semantics that uses the metaphor of game
playing to model computation. The game models of PCF [4, 12, 28] constructed in the
1990s have led to an unprecedented series of full abstraction results for a range of func-
tional/imperative programming languages. A result of this kind characterises contextual
equivalence between terms semantically, i.e. equality of denotations coincides with the
fact that terms can be used interchangeably in any context. As such, full abstraction
results can be said to capture the computational essence of programs.

The fully abstract game models from the 1990s covered a plethora of computational
effects, contributing to a general picture referred to as Abramsky’s cube [7]: by selec-
tively weakening the combinatorial conditions on plays of the games, one was able to
increase the expressivity of the games and capture desired computational effects.

Although those works successfully constructed models of state [6, 5, 3, 8], the tech-
niques used to interpret reference types did not make them fully compatible with what
constitutes the norm in languages such as ML or Java. In particular, references were
modelled through a form of indirection originating in the work of Reynolds [29], namely
by assuming that ref θ = (θ → unit)×(unit→ θ). The approach led to identification of
references with pairs of arbitrary reading (unit→ θ) and writing (θ → unit) functions.
While this view is elegant and certainly comprises the range of behaviours correspond-
ing to references, it does not enforce a relationship between reading and writing, as
witnessed by the presence of the product type. This causes a significant strengthening
of the semantic universe used for modelling references and, consequently, many de-
sirable equivalences are not satisfied in the model. For example, the interpretation of
(x := 0;x := 1) is different from that of x := 1 and, similarly, for x := !x and ().

To prove full abstraction in this setting, it is then necessary to enrich the syntax
with terms that will populate the whole semantic space of references. Such terms are



often referred to as bad variables, because they are objects of reference type equipped
with potentially unrelated reading and writing methods. Nonetheless, that solution is
not entirely satisfactory as the bad-variable construct breaks standard expectations for
references. Moreover, one would hope to be able to carve the model in such a way that it
matches the modelled language, instead of extending the language to match the model.

2 Nominal games

The bad-variable problem can be seen as the result of modelling a generative effect
(the creation and use of references) by equating it with the product of its observable
handling methods. Similar issues arise when modelling exceptions in this way, i.e. as
products of raise/handle functions [17]. Nominal game semantics is a recent branch
of game semantics that makes it possible to model generative effects in a more direct
manner, by incorporating names (drawn from an infinite set) as atomic objects in its
constructions. In particular, it can model reference types without bad variables by using
names to interpret references. Names can be created fresh, compared for equality and
passed around between program terms. They are embedded in moves and also feature
in stores that are carried by moves in the game. Intuitively, the stores correspond to
the observable part of program memory. For example, the two pairs of terms discussed
above can be modelled by the following two nominal plays respectively.

a{(a,i)} ?{(a,1)} a{(a,i)} ?{(a,i)}

Here a stands for an arbitrary name, i.e. the collection of plays is stable with respect to
name permutations. Formally, the objects studied in nominal game semantics (moves,
plays, strategies) live in nominal sets [9].

Nominal game semantics has allowed for more satisfactory models of languages
with computational effects. Since 2004, the nominal approach has led to a series of new
full abstraction results. Some of the languages covered are the ν-calculus [2] (purely
functional language with names), λν [18] (a higher-order language with storage of un-
typed names), Reduced ML [22] (a higher-order language with integer-valued storage),
RefML [23] (higher-order references) and Middleweight Java [24]. Nominal games
have also been used to model Concurrent ML [19] and exceptions [25].

Algorithmic game semantics

Game semantics provides a handle for attacking equivalence problems. One might won-
der to what extent it can be used to automate the process. This direction was initiated
and first pursued in classical game models, for fragments of Idealized Algol, where it
was observed that by restricting type disciplines to low orders it was possible to con-
cretely represent term strategies by means of finite-state or pushdown automata [10, 1].
We have investigated this problem for fragments of ML with ground references [23, 27]
and Interface Middleweight Java [21]. Our technique is based on automata over infinite
alphabets. This class is a natural fit for representing nominal plays due to the presence
of names, drawn from an infinite alphabet.
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Operational game semantics

The operational flavour of nominal games, combined with its concrete representation
of names, leads one to consider connections to trace models for higher-order programs
with names as examined e.g. in [16, 20, 11]. It turns out that games can be given a
fully operational presentation and can be seen essentially as open trace models with
composition as a primitive operation. This has been done in the specific case of games
for higher-order references [13], but we can now envisage a general applicability of the
approach. We have in particular developed operational game models for higher-order
languages with polymorphism [14, 15]. There, names are given an additional semantic
role, namely that of modelling abstract types and polymorphic values, thus imposing
polymorphic parametricity on the model.
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